HOME > News

Solliance and imec achieve 9.7% efficiency with new thin-film CZTSe solar cell

published: 2013-07-04 14:36

At next week’s Intersolar conference in San Francisco, imomec, imec’s associated lab at the Hasselt University, and Solliance, the European R&D consortium that focuses on thin-film photovoltaic solar energy (PV), will present a CZTSe (Cu2ZnSnSe4)-based solar cell with 9.7 percent efficiency (1x1cm2, AM1.5G). This promising result is an important step bringing the solar industry closer to a sustainable alternative for the highest efficiency thin-film solar cells in production, based on CIGS (Cu(In,Ga)(S,Se)2).
 
CZTSe is an emerging alternative solar cell absorber in thin-film solar cells, similar to CZTS (Cu2ZnSnS4). Unlike CIGS, CZTS and CZTSe do not suffer from abundancy issues.  At 1.5-1.6eV for CZTS, and 0.9eV for CZTSe, their bandgaps make a combined material system ideal for a multi-junction, thin-film solar cell that rivals the efficiency of CIGS cells (about 20 percent). Imomec, imec and Solliance have defined a path towards further improving the layers and cell structures of CZTSe and CZTS absorbers aiming at developing a multi junction CZTS/CZTSe solar cell with 20 percent cell efficiency. The presented CZTSe solar cell is an important step forward to reach this goal.
 
Imec/imomec fabricated the CZTSe layers by sputtering Cu, Zn and Sn metal layers on a Molybdenum-on-glass substrate and subsequent annealing in an H2Se containing atmosphere, achieving 9.7 percent efficiency. The resulting polycrystalline absorber layers are only 1µm thick, with a typical grain size of about 1µm. The samples were then processed at Helmholtz Zentrum Berlin into solar cells using a standard process flow for thin film solar cells and finished with a metal grid and anti-reflective coating at imec. The highest efficiency obtained on a 1x1cm2 cell was 9.7 percent, with a maximum short circuit current of 38.9mA/cm2, an open circuit voltage of 0.41V and a fill factor of 61 percent.

 

announcements add announcements     mail print
Share
Recommend